Nanjing University


Prof. Tao Li's Research Page    
      ——Surface Plasmon Photonics in DSL

--  NJU  --  CEAS  --  DSL  --


College of Engineering and Applied Sciences

 

Home

News

Research

People

Publication

Teaching

Photos

============

Featured Papers

Full Publication

2017

2016

2015

2014

2013

2012

2011

2010
and before

 

 

 

Selected Publications

 

A broadband achromatic metalens in the visibe
S. M. Wang, et al., Nature Nanotechnology 13, 227 (2018)
Highlighted by Nature Nanotech.- News & Views, Science Bulletin.
(Jan 2018)

 

 

Broadband achromatic optical metasurface devices
S. M. Wang, et al, Nature Communications 8, 187 (2017)
DeepTech, NJU News, 《材料牛
(August 2017)

 

Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering
J. Chen, et al, Nano Letters 17, 5051 (2017)
NJU News, 《材料牛
(July 2017)

A 14×14 um2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide
S.M. Wang, et al, Nature Communications 7, 11490 (2016)
NJU News , 《中国科学报》(pdf), 《科学网》 《科技信息

(May 2016)

Plasmonic polarization generator in well-routed beaming
L. Li, et al,
Light: Science & Applications 4, e330 (2015)
News in
《科技信息》of NJU, 《科学通报》(pdf).
(Sept. 2015)

Topologically protected interface mode in plasmonic waveguide arrays
Q. Q. Cheng, et al, Laser Photon. Rev. 9, 392 (2015)
News in 《科技信息》of NJU, 《科学通报》(pdf).
(Jun. 2015)

Plasmonic switch based on composite interference in metallic strip waveguides
Y. Wang, et al, Laser & Photonics Reviews 8, L47 (2014).
Selected as the Inside Back Cover
of
LPR Vol. 8, Issue 4.
News in
《科技信息》of NJU.
(Jun. 2014)

Active display and encoding by integrated plasmonic polarizer on light-emitting-diode
L. Wang, et al, Scientific Reports 2, 2603 (2013).
(Sept. 2013)

Collimated Plasmon Beam: Nondiffracting versus Linearly Focused
L. Li, et al, Phys. Rev. Lett. 110, 046807 (2013).

News in
《科技信息》of NJU.
(Jan. 2013)

Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons
L. Li, et al, Nano Lett. 11, 4357 (2011). 

(Sept. 2011)

Plasmonic Airy beam generated by in-plane diffraction
L. Li, et al, Phys. Rev. Lett. 107, 126804 (2011).
Interviewed by Nature Photonics, see
nphoton.2012.125.
(Sept. 2011)
 

Full list of Publications

Noted: All of the files in this page are copyrighted . They are provided for your convenience, yet you may download them only if you are entitled to do so by your arrangements with various publishers.
(* inditates the corresponding author,
indicates the co-first author)

 

        (2018)

  1. On-chip detection of orbital angular momentum beam by plasmonic nanogratings
    J. Chen, X. Chen, T. Li*, S. N. Zhu
    Laser Photon. Rev. 12, 1700331 (2018)

  2. Mode division multiplexed hologaphy by out-of-plane scattering of plasmon/guided modes
    C.C. Zhao, J. Chen, H. M. Li, T. Li*, S.N. Zhu
    Chin. Opt. Lett. 16, 070901 (2018)

  3. Simulation of massless Dirac dynamics in plasmonic waveguide arrays
    B.B. Xu, T. Li*, S.N. Zhu
    Optics Express 26, 13416 (2018).

  4. A broadband achromatic metalens in the visibe
    S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M.K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.T. Huang, J.H. Wang, R.M. Lin, C. H. Kuan, T. Li, Z.L. Wang, S.N. Zhu, and D.P. Tsai*
    Nature Nanotechnology 13, 227 (2018). pdf

  5. Digitalizing self-assembled chiral superstructures for optical vortex processing
    P. Chen, L.L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M.J. Tang, R. Xu, W. Gao, T. Li, W. Hu,* and Y.Q. Lu*
    Adv. Mater. 30, 1705865 (2018). pdf


    (2017)

  6. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular
    deposition
    Y. Yin, S. Xu, T. Li, Y. Yin, Y. Xia* & J. Yin
    Scientific Reports 7, 7788 (2017)

  7. Broadband Achromatic Optical Metasurface Devices
    S. M. Wang,* P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan,  T. Li,* S.N. Zhu,* and D.P. Tsai*
    Nature Communications 8, 187 (2017). pdf

  8. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering
    J. Chen, T. Li,* S. M. Wang,* and S. N. Zhu
    Nano Lett. 17, 5051-5055 (2017). pdf

  9. Graphene-based plasmonic modulator on a groove-structured metasurface
    Y.L. Wang, T. Li,* S.N. Zhu,
    Opt. Lett. 42, 2247 (2017). pdf

  10. Manipulating surface plasmon propagation: from beam modulation to near-field holography (Review paper)
    表面等离激元的传播操控:从波束调制到近场全息 (《激光与光电子学》综述论文)
    T. Li,* J. Chen, S.N. Zhu
    Laser & Optoelectronics Progress 54, 050002 (2017). pdf

  11. Tunable unidirectional surface plasmon polariton launcher utitlizing a graphene-based single asymmetric nanoantenna
    L. Huang, S. Wu, Y. Wang, X. Ma, H. Deng, S. Wang, Y. Lu, C. Li,* T. Li,*
    Opt. Mater. Express 7, 569 (2017). pdf

    (2016)

  12. Grayscale transparent metasurface holograms
    L. Wang, S. Kruk,* H. Tang, T. Li, I. Kravchenko, D. N. Neshev,and Y. S. Kivshar
    Optica 3, 1504 (2016) (memorandum) pdf

  13. Microtrap on a concave grating reflector for atom trapping
    H. Zhang, T. Li, Y. L. Yin, X. J. Li, Y. Xia*, J. P. Yin

    Chin. Phys. B 25, 087802 (2016).

  14. Indefinite plasmonic beam engineering by in-plane holography
    J. Chen, L. Li, T. Li*, S.N. Zhu
    Sci. Rep. 6, 28926 (2016). pdf

  15. Compact surface plasmon amplifier in nonlinear hybrid waveguide
    S.S. Wang, D.Q. Wang, X.P. Hu, T. Li*, and S.N. Zhu
    Chin. Phys. B 25, 077301 (2016). pdf

  16. A 14×14 um2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide
    S.M. Wang*, Q.Q. Cheng, Y.X. Gong, P. Xu, C. Sun, L. Li, T. Li* & S.N. Zhu*
    Nature Communications  7:11490 | DOI: 10.1038/ncomms11490 (2016). pdf

    (2015)

  17. Plasmonic polarization generator in well-routed beaming
    L. Li, T. Li*, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu
    Light: Science & Applications 4, e330 (2015). pdf

  18. Topologically protected interface mode in plasmonic waveguide arrays
    Q. Q. Cheng, Y. Pan, Q. Wang, T. Li*, and S. N. Zhu
    Laser Photon. Rev. 9, 392 (2015). pdf

  19. Simultaneous directional emissions of multiple quantum emitters with cross plasmonic antenna
    J. J. Yang, S. M. Wang,* Q. Q. Cheng, T. Li, X. P. Hu, and S. N. Zhu
    Opt. Express 23, 15098 (2015). pdf

    (2014)

  20. Mode division multiplexing in a polymer-loaded plasmonic planar waveguide
    Q. Q. Cheng, T. Li,* L. Li, S. M. Wang, and S. N. Zhu

    Opt. Lett. 39, 3900 (2014). pdf

  21. Plasmonic switch based on composite interference in metallic strip waveguides
    Y. Wang, T. Li,* L. Wang, H. He, L. Li, Q. Wang, and S. N. Zhu,
     Laser Photon. Rev.
     8, L47 (2014).(Inside Back Cover) link

  22. Groove-structured metasurfaces for modulation of surface plasmon propagation
    Z. Xu, T. Li*, D. H. Zhang*, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, T. Yu
    Appl. Phys. Express 7, 052001 (2014). pdf


    (2013)

  23. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode
    L. Wang, T. Li,* R. Y. Guo, W. Xia, X. G. Xu, S. N. Zhu, 
    Sci. Rep.
     2, 2603 (2013). pdf

  24. Converting surface plasmon to spatial Airy beam by graded grating on metal surface
    X. M. Tang, L. Li, T. Li,* Q. J. Wang, X. J. Zhang, S. N. Zhu, Y. Y. Zhu, 
    Opt. Lett. 38, 1733 (2013). pdf

  25. Unidirectional surface plasmon-polariton excitation by a compact slot partially filled with dielectric
    D. Li, D. H. Zhang, C. Yan, T. Li, Y. Wang, Z. Xu, J. Wang, F. Qin
    Opt. Express 21, 5949 (2013).

  26. Collimated Plasmon Beam: Nondiffracting versus Linearly Focused
    L. Li, T. Li,* S. M. Wang, and S. N. Zhu
    Phys. Rev. Lett. 110, 046807 (2013). pdf
     
    (2012)

  27. Steering plasmon beam from a point source
    L. Li, T. Li,* S. M. Wang, S. N. Zhu
    Opt. Lett. 37, 5091 (2012). pdf

  28. Direct observation of guided-mode interference in polymer-loaded plasmonic waveguide
    Q. Q. Cheng, T. Li,* R. Y. Guo, L. Li, S. M. Wang, S. N. Zhu
    Appl. Phys. Lett. 101, 171116 (2012). pdf

  29. Electrically generated unidirectional surface plasmon source
    L. Wang, 
    T. Li,* L. Li, W. Xia, X. G. Xu, and S. N. Zhu
    Opt. Express 20, 8710-8717 (2012). pdf

  30. The interaction between quantum dots and coupled magnetic plasmon in coupled metamaterial
    S. M. Wang, H. Liu, T. Li, S. N. Zhu, X. Zhang
    Phys. Lett. A 376, 1812 (2012).

  31. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial
    S. M. Wang, S. Y. Mu, C. Zhu, Y. X. Gong, P. Xu, H. Liu, 
    T. Li, S. N. Zhu, and X. Zhang
    Opt. Express 20, 5213-5218 (2012). pdf

    (2011)

  32. Broad Band Focusing and Demultiplexing of In-Plane Propagating Surface Plasmons
    L. Li, T. Li,* S. M. Wang, S. N. Zhu, X. Zhang
    Nano Lett. 11, 4357 
    (2011). pdf

  33. Plasmonic Airy beam generated by in-plane diffraction
    L. Li, T. Li,* S. M. Wang, C. Zhang, S. N. Zhu 
    Phys. Rev. Lett. 107, 126804 (2011
    ). pdf

  34. Efficient second-harmonic generation in nonlinear plasmonic waveguide
    F. F. Lu, T. Li,* X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu 
    Opt. Lett. 36, 3371 (2011). pdf

  35. Magnetic plasmon in coupled nanosandwich structure
    L. Qiu, S. M. Wang, H. Liu, T. Li, S. N. Zhu, X. Zhang
    J. Opt. Soc. Am. B 28, 1655 (2011).

  36. Spectral analysis of enhanced third harmonic generation from plasmonic excitations
    G. X. Li, T. Li, H. Liu, K. F. Li, S. M. Wang, S. N. Zhu, K. W. Cheah
    Appl. Phys. Lett. 98, 261909 (2011).

  37. Nanometer-scale molecular deposition using the surface Plasmon polariton interference field on a metal film
    Y. L. Yin, T. Li, P. Xu, H. Jin, S. N. Zhu
    Appl. Phys. Lett. 98, 093105 (2011).

  38. Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab
    Y. J. Zheng, H. Liu, S. M. Wang, T. Li, J. X. Cao, L. Lin, C. Zhu, Y. Wang, S. N. Zhu, X. Zhang
    Appl. Phys. Lett. 98, 083117 (2011).

  39. Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide
    F. F. Lu, T. Li,* J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu
    Opt. Express 19, 2858 (2011). 
    pdf

  40. Manipulating optical polarization by stereo plasmonic structure
    J. Xu, T. Li,* F. F. Lu, S. M. Wang and S. N. Zhu
    Opt. Express 19, 748 (2011). pdf

    (2010)

  41. Cavity-involved plasmonic metamaterial for optical polarization conversion
    T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu
    Appl. Phys. Lett. 97, 261113 (2010). pdf

  42. Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain
    C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu and X. Zhang
    Opt. Express 18, 26268 (2010)

  43. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency
    Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang
    Opt. Express 18, 22412 (2010)

  44. Hybridization influence on the plasmon-mediated lasing effect in active metamaterials 
    Z. G. Dong, H. Liu, T. Li, M. X. Xu, W. B. Lu, S. N. Zhu,
    Phys. Lett. A 374, 4279 (2010)

  45. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials
    Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, X. Zhang,
    Appl. Phys. Lett. 97, 114101 (2010)

  46. High sensing properties of magnetic plasmon resonance in the double-rod and tri-rod structures 
    J. X. Cao, H. Liu, T. Li, S. M. Wang, Z. G. Dong, S. N. Zhu,
    Appl. Phys. Lett. 97, 071905 (2010)

  47. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars
    Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu,
    Opt. Express 18, 18229 (2010)

  48. Hybridization effect in coupled metamaterials 
    H. Liu, T. Li, S. M Wang, S. N. Zhu
    Front. Phys. China 5, 277-290 (2010) 
    (Review Paper)

  49. The gain effect in a magnetic plasmon waveguide
    S. M. Wang, Z. H. Zhu, J. X. Cao, T. Li, H. Liu, S. N. Zhu, and X. Zhang
    Appl. Phys. Lett. 96, 113103 (2010)

  50. Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots
    Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang
    Appl. Phys. Lett. 96, 044104 (2010) 
    This paper has been selected for the February 15, 2010 issue of Virtual Journal of Nanoscale Science & Technology

    (2009)

  51. Magnetic Plasmon Modes Introduced by the Coupling Effect in Metamaterials
    H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu and X. Zhang
    Chaper 11 in Book: “Metamaterials Theory, Design and Applications” (pp. 247-269) edited by T. J. Cui, D. R. Smith and R. P. Liu, Springer (2009) (DOI 10.1007/978-1-4419-0573-4)

  52. Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials
    Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang
    Phys. Rev. B 80, 235116 (2009)

  53. Steering polarization of infrared light through hybridization effect in a tri-rod structure
    J. X. Cao, H. Liu, T. Li, S. M. Wang, T. Q. Li, S. N. Zhu, and X. Zhang
    J. Opt. Soc. Am. B 26, B96 (2009)

  54. Suppression of radiation loss by hybridization effect in two coupled split-ring resonators
    T. Q. Li, H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang
    Phys. Rev. B 80, 115113 (2009)

  55. Structural-configurated magnetic plasmon bands in connected ring chains
    T. Li, R. X. Ye, C. Li, H. Liu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang
    Opt. Express 17, 11486 (2009).

  56. Coupled magnetic plasmons in metamaterials
    H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang
    Phys. Status Solidi B 
    246, 1397 (2009) (Review Paper)

  57. Optically pumped nanolaser based on two magnetic plasmon resonance modes
    Z. H. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, W. M. Ye, X. D. Yuan, and S. N. Zhu,
    Appl. Phys. Lett. 94, 103106 (2009)

  58. Parametric simulations of the metallic double-ring metamaterials: Geometric optimization and terahertz response
    Z. G. Dong, M. X. Xu, H. Liu, T. Li, and S. N. Zhu
    J. Appl. Phys. 105, 034907 (2009)

  59. Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators 
    H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang 
    Phys. Rev. B 79, 024304 (2009) 
    This paper has been selected for the February 9, 2009 issue of Virtual Journal of Nanoscale Science & Technology 

    (2008)

  60. Omnidirectional magnetic-resonance transmission and its elimination in a metallic metamaterial comprising rings and plates 
    Z. G. Dong, M. X. Xu, H. Liu, T. Li, and S. N. Zhu 
    Phys. Rev. E 78, 066612 (2008)

  61. Selective switch made from a graded nanosandwich chain
    S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu, and X. Zhang
    Appl. Phys. Lett. 93, 233102 (2008)

  62. Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamateria
    Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang
    Opt. Express 16, 20974 (2008)

  63. Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations
    T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang
    Appl. Phys. Lett. 93, 021110 (2008)
    This paper has been selected for the July 28, 2008 issue of 
    Virtual Journal of Nanoscale Science & Technology

  64. Lamellar model of the left-handed metamaterials composed of metallic split-ring resonators and wires 
    S. Y. Lei, Z. G. Dong, M. X. Xu, H. Liu, T. Li, F. M. Wang, S. N. Zhu
    Phys. Lett. A 372, 4667 (2008)

  65. Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity
    D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang
    Phys. Rev. B 77, 214302 (2008)

  66. Light transmission through Fibonacci and periodic sub-wavelength slit arrays
    J. Q. Li, S. Q. Liu, C. P. Huang, T. Li, Q. J. Wang and Y. Y. Zhu
    J. Opt. A: Pure Appl. Opt. 10 075202 (2008)

  67. Negative refraction with magnetic resonance in a metallic double-ring metamaterial
    Z.G. Dong, S.Y. Lei, M. X. Xu, H. Liu, T. Li, F. M. Wang, S. N. Zhu
    Appl. Phys. Lett. 92, 064101 (2008) 

  68. Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial
    T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu and X. Zhang
    Appl. Phys. Lett. 92,131111 (2008)

  69. Negative index of refraction in metallic metamaterial comprising split-ring resonators
    Z.G. Dong, S.Y. Lei, M. X. Xu, H. Liu, T. Li, F. M. Wang, S. N. Zhu
    Phys. Rev. E 77, 056609 (2008)

  70. Magnetic plasmon modes in periodic chains of nanosandwiches
    S. M. Wang, T. Li, H. Liu, F. M. Wang, S. N. Zhu and X. Zhang
    Optics Express 16, 3560 (2008)

  71. High-confined second harmonic generation in nano-scale slot waveguides
    Z. Qi, T. Li, and S. N. Zhu,
    J. Phys. D: Appl. Phys. 41, 025109 (2008
    )

  72. Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials
    T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu and X. Zhang
    J. Appl. Phys. 103, 023104 (2008) 

    (2007)

  73. Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains
    F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu and W. W. Cao
    Appl. Phys. Lett. 91, 133107 (2007)

  74. Omnidirectional negative refraction with wide bandwidth introduced by magnetic coupling in a tri-rod structure
    F. M. Wang, H. Liu, T. Li, S. N. Zhu, and X. Zhang
    Phys. Rev. B 76, 075110 (2007)

  75. Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial
    T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu
    Phys. Rev. E 76, 016606 (2007)

  76. Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures 
    T. Li, J. Q. Li, F.M. Wang, Q. J. Wang, H. Liu, S.N. Zhu, and Y. Y. Zhu
    Appl. Phys. Lett. 90, 251112 (2007)

  77. Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial 
    Z.G. Dong, S.Y. Lei, Q. Li, M. X. Xu, H. Liu, T. Li, F. M. Wang, S. N. Zhu
    Phys. Rev. B 75, 075117 (2007)

  78. Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime
    F. M. Wang, H. Liu, T. Li, Z. G. Dong,S. N. Zhu, and X. Zhang
    Phys. Rev. E 75, 016604 (2007) 

    (2006 and before)

  79. Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission
    T. Li, H. Liu, F. M. Wang, Z. G. Dong, and S. N. Zhu
    Optics Express 14, 11155 (2006)

  80. Spin-configuration-related ferromagnetic resonance in nickel nanowire arrays 
    T. Li,
     Y.X. Sui, Z.G. Huang, S.G. Yang, B.X. Gu, and Y.W. Du,
    J. Phys.: Condens. Matter 17, 3637 (2005).

  81. Strong luminescent Cr-doped alumina nanofibres 
    T. Li
    , S.G. Yang, and Y.W. Du, 
    Nanotechnology 16, 365 (2005).

  82. A novel process from cobalt nanowire to Co3O4 Nanotube
    T. Li, S.G. Yang, L.S. Huang, B.X. Gu, and Y.W. Du,
    Nanotechnology 15, 1479 (2004).

  83. Formation of Co3O4 nanotubes and the magnetic behaviour at low temperature
    T. Li, S.G. Yang, L.S. Huang, B.X. Gu, and Y.W. Du,
    Chin. Phys. Lett. 21, 966 (2004).

  84. Strong photoluminescence from Cr3+ doped porous anodic alumina
    T. Li, S.G. Yang, L.S. Huang, J.R. Zhang, B.X. Gu, and Y.W. Du,
    J. Phys.: Condens. Matter 16, 2463 (2004).

  85. Anisotropic magnetization in arrays of coupled Ni nanowires
    T. Li, S.G. Yang, L.S. Huang, B.X. Gu, and Y.W. Du,
    Chin. Phys. Lett. 21, 729 (2004).

  86. Preparation of large-scale cupric oxide nanowires by thermal evaporation method
    L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du, Y.N. Lu, and S.Z. Shi,
    J. Cryst. Growth 260, 130 (2004)

  87. Stability of anodic aluminum oxide membranes with nanopores
    S.G. Yang, T. Li, L.S. Huang, T. Tang, J.R. Zhang, B.X. Gu, Y.W. Du, S.Z. Shi, and Y.N Lu,
    Phys. Lett. A 318, 440 (2003)

  88. Ferromagnetism in Mn-doped CuO
    S.G. Yang, T. Li, B.X. Gu, Y.W. Du, H.Y. Sung, S.T. Hung, C.Y. Wong, and A.B. Pakhomov,
    Appl. Phys. Lett. 83, 3746 (2003)

  89.  Ferrimagnetic copper chloride hydroxide
    S.G. Yang, T. Li, B.L. Xu, and Y.W. Du
    J. Phys.: Condens. Matter 15, 5629 (2003)

Copyright (C) NJU DSL GROUP, NANJING, CHINA